Recorrência

Prof.Luciano Monteiro de Castro

Soluções

1. Seja a_n o número procurado. Temos $a_1 = 1$ e $a_2 = 3$ (um quadrado, dois dominós na horizontal ou dois dominós na vertical). Se n > 2, considere as três possibilidades para cobrir o canto superior esquerdo: um dominó na vertical, um dominó na horizontal ou um quadrado. A primeira nos deixa com um retângulo $2 \times n - 1$, que pode ser coberto de a_{n-1} maneiras. A segunda possibilidade nos obriga a colocar outro dominó horizontal para cobrir o canto inferior esquerdo, deixando-nos com um retângulo $2 \times n - 2$, que pode ser coberto de a_{n-2} maneiras, o mesmo acontecendo com a terceira possibilidade. Assim,

$$a_n = a_{n-1} + 2a_{n-2}.$$

A equação característica, $x^2-x-2=0$, tem raízes 2 e -1. Logo $\alpha_n=\alpha @^n+\beta (-1)^n$. Observando que $\alpha_0=1$, resolvemos o sistema $\alpha+\beta=1$, $2\alpha-\beta=1$ e encontramos $\alpha=\frac{2}{3}$ e $\beta=\frac{1}{3}$. Logo a resposta é

$$a_n = \frac{2^{n+1} + (-1)^n}{3}.$$

2. Seja P(n) a resposta ao problema. Temos P(1)=1 e P(2)=2, pois todas as permutações de 1 ou 2 elementos cumprem a condição do enunciado. Para n>2, Há duas possibilidades para p_n , $p_n=n$ ou $p_n=n-1$. No primeiro caso, o número de maneiras de completar a permutação é P(n-1). No segundo caso, seja k tal que $p_k=n$. Devemos ter $|n-k|\leq 1$ e $k\neq n$, logo k=n-1, ou seja $p_{n-1}=n$. Isso significa que os demais n-2 valores ocuparão as primeiras n-2 posições, logo o número de maneiras de completar a permutação neste caso é P(n-2). Concluímos que

$$P(n) = P(n-1) + P(n-2)$$
 (recorrência de Fibonacci).

Como $P(1) = F_2 e P(2) = F_3$, concluímos que

$$P(n) = F_{n+1} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{n+1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{n+1} \right]$$

3. Se $m_1=n$, há uma única maneira. Para cada possível valor de $m_1< n$, o número de maneiras de escolher os números m_2,\ldots,m_k é igual a $r(n-m_1)$, pois $n-m_1=m_2+\cdots+m_k$. Como os possíveis valores de $m_1< n$ são $1,2,\ldots,n-1$, temos $r(n)=1+r(1)+r(2)+\cdots+r(n-1)$. Assim, para $n\geq 3$, temos $r(n-1)=1+r(1)+r(2)+\cdots+r(n-2)$ e subtraindo estas duas últimas equações obtemos $r(n)-r(n-1)=r(n-1)\iff r(n)=2r(n-1)$. Como r(1)=1 e r(2)=2, esta igualdade é válida para todo $n\geq 2$. A seqüência r(n) é, portanto, uma P.G. de razão 2 cujo termo geral é dado por $r(n)=2^{n-1}r(1)$, ou seja, $r(n)=2^{n-1}$.

Uma demonstração direta pode ser a seguinte: Considere uma fila com $\mathfrak n$ números "1". Em cada um dos $\mathfrak n-1$ espaços entre esses números "1" temos a opção de acrescentar ou não um sinal "+". A sequência final formada pode ser interpretada como uma sequência de inteiros positivos de soma $\mathfrak n$. Reciprocamente, cada possível solução pode ser interpretada como uma tal sequências de números "1" e sinais "+".